ERC-CZ MORE — bibliography

Project ERC-CZ Implicitly constituted material models: From theory through model reduction to efficient numerical methods ended on 31st August 2017. The project involved substantial number of people form the mathematical modelling group as well as people from the numerical mathematics group, and we see the project as very successful. In particular, we are very happy that we have indeed simultaneously investigated physical, analytical and computational aspects of the mathematical modelling of complex materials.

As a byproduct of writing a final report, we have compiled a list of papers published with the support of the project. This list of papers so far published is shown below. (There is, of course, a lot of manuscripts that are under review or just in print, these are listed on the project webpage.) If you want to more about the project, please visit the project webpage.

  1. Alnæs, Martin; Blechta, Jan; Hake, Johan; Johansson, August; Kehlet, Benjamin; Logg, Anders; Richardson, Chris; Ring, Johannes; Rognes, Marie; and Wells, Garth: The FEniCS project version 1.5.Archive of Numerical Software, 3(100), 2015.DOI: 10.11588/ans.2015.100.20553
  2. Anikushyn, Andrii and Pokojovy, Michael: Multidimensional thermoelasticity for nonsimple materials — well-posedness and long-time behavior.Applicable Analysis, 96:1561–1585, 2017.DOI: 10.1080/00036811.2017.1295447
  3. Arioli, Mario; Liesen, Jörg; Miedlar, Agnieszka; and Strakoš, Zdeněk: Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems.GAMM Mitteilungen, 36(1):102–129, 2013.DOI: 10.1002/gamm.201310006
  4. Beck, Lisa; Bulíček, Miroslav; and Frehse, Jens: Old and new results in regularity theory for diagonal elliptic systems via blow up techniques.Journal of Differential Equations, 259(11):6528–6572, 2015.DOI: 10.1016/j.jde.2015.07.030
  5. Beck, Lisa; Bulíček, Miroslav; Málek, Josef; and Süli, Endre: On the existence of integrable solutions to nonlinear elliptic systems and variational problems with linear growth.Archive for Rational Mechanics and Analysis, 225(2):717–769, 2017.DOI: 10.1007/s00205-017-1113-4
  6. Bonnivard, Matthieu; Suárez-Grau, Francisco J.; and Tierra Chica, Giordano: On the influence of wavy riblets on the slip behaviour of viscous fluids.Zeitschrift für angewandte Mathematik und Physik, 67(2):67:27, 2016.DOI: 10.1007/s00033-015-0614-y
  7. Bulíček, Miroslav; Burczak, Jan; and Schwarzacher, Sebastian: A unified theory for some non-Newtonian fluids under singular forcing.SIAM Journal on Mathematical Analysis, 48(6):4241–4267, 2016.DOI: 10.1137/16M1073881
  8. Bulíček, Miroslav; Diening, Lars; and Schwarzacher, Sebastian: Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems.Analysis \& PDE, 9(5):1115–1151, 2016.DOI: 10.2140/apde.2016.9.1115
  9. Bulíček, Miroslav; Frehse, Jens; and Steinhauer, Mark: Weighted integral techniques and C-alpha-estimates for a class of elliptic systems with p-growth.Annali di Matematica Pura ed Applicata, 194(4):1025–1069, 2015.DOI: 10.1007/s10231-014-0410-x
  10. Bulíček, Miroslav; Glitzky, Annegret; and Liero, Matthias: Systems describing electrothermal effects with p(x)-laplacian like structure for discontinuous variable exponents.SIAM Journal on Mathematical Analysis, 48(5):3496–3514, 2016.DOI: 10.1137/16M1062211
  11. Bulíček, Miroslav; Glitzky, Annegret; and Liero, Matthias: Thermistor systems of p(x)-Laplace-type with discontinuous exponents via entropy solutions.Discrete and Continuous Dynamical Systems – Series S, 10(4):697–713, 2017.DOI: 10.3934/dcdss.2017035
  12. Bulíček, Miroslav; Gwiazda, Piotr; and Świerczewska-Gwiazda, Agnieszka: On unified theory for scalar conservation laws with fluxes and sources being discontinuous with respect to the unknown.Journal of Differential Equations, 262(1):313–364, 2017.DOI: 10.1016/j.jde.2016.09.020
  13. Bulíček, Miroslav; Gwiazda, Piotr; Świerczewska-Gwiazda, Agnieszka; and Süli, Endre: Analysis of a viscosity model for concentrated polymers.Mathematical Models and Methods in Applied Sciences (M3AS), 26(8):1599–1648, 2016.DOI: 10.1142/S0218202516500391
  14. Bulíček, Miroslav and Málek, Josef: On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary.In Herbert Amann; Yoshikazu Giga; Hideo Kozono; Hisashi Okamoto; and Masao Yamazaki, editors, Recent Developments of Mathematical Fluid Mechanics, Advances in Mathematical Fluid Mechanics, 135–156. Birkhauser, Basel, 2016.DOI: 10.1007/978-3-0348-0939-9\_8
  15. Bulíček, Miroslav and Málek, Josef: Internal flows of incompressible fluids subject to stick-slip boundary conditions.Vietnam Journal of Mathematics, 45:2017–220, 2017.DOI: 10.1007/s10013-016-0221-z
  16. Bulíček, Miroslav; Málek, Josef; Rajagopal, K. R.; and Süli, Endre: On elastic solids with limiting small strain: modelling and analysis.EMS Surveys in Mathematical Sciences, 1(2):283–332, 2014.DOI: 10.4171/EMSS/7
  17. Bulíček, Miroslav; Málek, Josef; Rajagopal, K. R.; and Walton, Jay R.: Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies.Calculus of Variations and PDE’s, 54(2):2115–2147, 2015.DOI: 10.1007/s00526-015-0859-5
  18. Bulíček, Miroslav; Málek, Josef; and Süli, Endre: Analysis and approximation of a strain-limiting nonlinear elastic model.Mathematics and Mechanics of Solids, 20(1):92–118, 2015.DOI: 10.1177/1081286514543601
  19. Bulíček, Miroslav; Málek, Josef; and Žabenský, Josef: A generalization of the Darcy–Forchheimer equation involving an implicit, pressure-dependent relation between the drag force and the velocity.Journal of Mathematical Analysis and Applications, 424(1):785–801, 2015.DOI: 10.1016/j.jmaa.2014.11.053
  20. Bulíček, Miroslav; Málek, Josef; and Žabenský, Josef: On generalized Stokes’ and Brinkman’s equations with pressure- and shear-dependent viscosity and drag coefficient.Nonlinear Analysis: Real World Applications, 26:109–132, 2015.DOI: 10.1016/j.nonrwa.2015.05.004
  21. Bulíček, Miroslav and Pustějovská, Petra: Existence analysis for a model describing flow of an incompressible chemically reacting non-Newtonian fluid.SIAM Journal on Mathematical Analysis, 46(5):3223–3240, 2014.DOI: 10.1137/130927589
  22. Bulíček, Miroslav and Schwarzacher, Sebastian: Existence of very weak solutions to elliptic systems of p-laplacian type.Calculus of Variations and Partial Differential Equations, 55(3):55, 2016.DOI: 10.1007/s00526-016-0986-7
  23. Bulíček, Miroslav and Žabenský, Josef: Large data existence theory for unsteady flows of fluids with pressure- and shear-dependent viscosities.Nonlinear Analysis — Theory, Methods \& Applications, 127:94–127, 2015.DOI: 10.1016/
  24. Camano, Jessika; Gatica, Gabriel N.; Oyarzúa, Ricardo; and Tierra Chica, Giordano: An augmented mixed finite element method for the Navier–Stokes equations with variable viscosity.SIAM Journal on Numerical Analysis, 54(2):1069–1092, 2016.DOI: 10.1137/15M1013146
  25. Camano, Jessika; Oyarzúa, Ricardo; and Tierra Chica, Giordano: Analysis of an augmented mixed-FEM for the Navier–Stokes problem.Mathematics of Computation, 86(304):589–615, 2017.DOI: 10.1090/mcom/3124
  26. Diening, Lars; Feireisl, Eduard; and Lu, Yong: The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier–Stokes system.ESAIM: Control, Optimisation and Calculus of Variations, 23(3):851–868, 2017.DOI: 10.1051/cocv/2016016
  27. Dolejší, Vít; Ern, Alexandre; and Vohralík, Martin: $hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems.SIAM Journal on Scientific Computing, 38(5):A3220–A3246, 2016.DOI: 10.1137/15M1026687
  28. Dolejší, Vít; Šebestová, Ivana; and Vohralík, Martin: Algebraic and discretization error estimation by equilibrated fluxes for discontinuous Galerkin methods on nonmatching grids.Journal of Scientific Computing, 64(1):1–34, 2015.DOI: 10.1007/s10915-014-9921-2
  29. Duintjer Tebbens, Jurjen; Meurant, Gérard; Sadok, Hassane; and Strakoš, Zdeněk: On investigating GMRES convergence using unitary matrices.Linear Algebra and its Applications, 450(1):83–107, 2014.DOI: 10.1016/j.laa.2014.02.044
  30. Ern, Alexandre and Vohralík, Martin: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations.SIAM Journal on Numerical Analysis, 53(2):1058–1081, 2015.DOI: 10.1137/130950100
  31. Feireisl, Eduard: Mathematical analysis of fluids in motion: From well-posedness to model reduction.Revista Matemática Complutense, 26(2):299–340, 2013.DOI: 10.1007/s13163-013-0126-2
  32. Feireisl, Eduard: Scaling and singular limits in the equations of continuum fluid mechanics.Methods and Applications of Analysis, 20(2):115–140, 2013.DOI: 10.4310/MAA.2013.v20.n2.a2
  33. Feireisl, Eduard: Relative entropies, dissipative solutions, and singular limits of complete fluid systems.In Alberto Bressan; Fabio Ancona; Pierangelo Marcati; and Andrea Marson, editors, Hyperbolic Problems: Theory, Numerics, Applications, volume 8 of AIMS on Applied Mathematics, 11–28. AIMS, Springfield, USA, 2014.ISBN 13: 978-1-60133-017-8
  34. Feireisl, Eduard; Liao, Xian; and Málek, Josef: Global weak solutions to a class of non-Newtonian compressible fluids.Mathematical Methods in Applied Sciences, 38(16):3482–3494, 2015.DOI: 10.1002/mma.3432
  35. Feireisl, Eduard and Lu, Yong: Homogenization of the stationary compressible Navier–Stokes equations in domains with tiny holes.Journal of Mathematical Fluid Mechanics, 17(2):381–392, 2015.DOI: 10.1007/s00021-015-0200-2
  36. Feireisl, Eduard; Lu, Yong; and Málek, Josef: On pde analysis of flows of quasi-incompressible fluids.Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 96(4):491–508, 2016.DOI: 10.1002/zamm.201400229
  37. Feireisl, Eduard; Lu, Yong; and Novotný, Antonín: Rotating compressible fluids under strong stratification.Nonlinear Analysis: Real World Applications, 19:11–18, 2014.DOI: 10.1016/j.nonrwa.2014.02.004
  38. Feireisl, Eduard; Lu, Yong; and Süli, Endre: Dissipative weak solutions to compressible Navier–Stokes–Fokker–Planck systems with variable viscosity coefficients.Journal of Mathematical Analysis and Applications, 443(1):322–351, 2016.DOI: 10.1016/j.jmaa.2016.05.030
  39. Feireisl, Eduard and Novotný, Antonín: Multiple scales and singular limits for compressible rotating fluids with general initial data.Communications in Partial Differential Equations, 39(6):1104–1127, 2014.DOI: 10.1080/03605302.2013.856917
  40. Feireisl, Eduard and Novotný, Antonín: Scale interactions in compressible rotating fluids.Annali di Matematica Pura ed Applicata, 193(6):1703–1725, 2014.DOI: 10.1007/s10231-013-0353-7
  41. Feireisl, Eduard; Novotný, Antonín; and Sun, Yongzhong: A regularity criterion for the weak solutions to the Navier–Stokes–Fourier system.Archive for Rational Mechanics and Analysis, 212(1):219–239, 2014.DOI: 10.1007/s00205-013-0697-6
  42. Gatica, Gabriel N.; Ruiz-Baier, Ricardo; and Tierra Chica, Giordano: A mixed finite element method for Darcy’s equations with pressure dependent porosity.Mathematics of Computation, 85:1–33, 2016.DOI: 10.1090/mcom/2980
  43. Gergelits, Tomáš and Strakoš, Zdeněk: Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations.Numerical Algoritms, 65(4):759–782, 2014.DOI: 10.1007/s11075-013-9713-z
  44. Guidat, Thomas; Pochat, Stephane; Bourgeois, Olivier; and Souček, Ondřej: Landform assemblage in Isidis Planitia, Mars: Evidence for a 3 Ga old polythermal ice sheet.Earth and Planetary Science Letters, 411:253–267, 2015.DOI: 10.1016/j.epsl.2014.12.002
  45. Guillén-González, Francisco; Rodríguez-Bellido, Maria Angeles; and Tierra Chica, Giordano: Linear unconditional energy-stable splitting schemes for a phase-field model for nematic-isotropic flows with anchoring effects.International Journal for Numerical Methods in Engineering (IJNME), 108(6):535–567, 2016.DOI: 10.1002/nme.5221
  46. Guillén-González, Francisco and Tierra Chica, Giordano: Second order schemes and time-step adaptivity for Allen–Cahn and Cahn–Hilliard models.Computers \& Mathematics with Applications, 68(8):821–846, 2014.DOI: 10.1016/j.camwa.2014.07.014
  47. Guillén-González, Francisco and Tierra Chica, Giordano: Approximation of smectic-A liquid crystals.Computer Methods in Applied Mechanics and Engineering, 290(15):342–361, 2015.DOI: 10.1016/j.cma.2015.03.015
  48. Hnětynková, Iveta; Plešinger, Martin; and Strakoš, Zdeněk: Band generalization of the Golub–Kahan bidiagonalization, generalized Jacobi matrices, and the core problem.SIAM Journal on Matrix Analysis and Applications, 36(2):417–434, 2015.DOI: 10.1137/140968914
  49. Hron, Jaroslav; Miloš, Vojtěch; Průša, Vít; Souček, Ondřej; and Tůma, Karel: On thermodynamics of incompressible viscoelastic rate type fluids with temperature dependent material coefficients.International Journal of Non-Linear Mechanics, 95:193–208, 2017.DOI: 10.1016/j.ijnonlinmec.2017.06.011
  50. Hron, Jaroslav; Rajagopal, K. R.; and Tůma, Karel: Flow of a Burgers fluid due to time varying loads on deforming boundaries.Journal of Non-Newtonian Fluid Mechanics, 210(0):66–77, 2014.DOI: 10.1016/j.jnnfm.2014.05.005
  51. Janečka, Adam and Průša, Vít: The motion of a piezoviscous fluid under a surface load.International Journal of Non-Linear Mechanics, 60(4):23–32, 2014.DOI: 10.1016/j.ijnonlinmec.2013.12.006
  52. Janečka, Adam and Průša, Vít: Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-Newtonian fluids.AIP Conference Proceedings, 1662:020003, 2015.DOI: 10.1063/1.4918873
  53. Janečka, Adam; Průša, Vít; and Rajagopal, K. R.: Euler–Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range.Archives of Mechanics, 68(1):3–25, 2016.DOI:
  54. Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gael; and Čadek, Ondřej: Ice melting and downward transport of meltwater by two-phase flow in Europa’s ice shell.JGR-Planets, 119(3):532–549, 2014.DOI: 10.1002/2013JE004563
  55. Kopal, Jiří; Rozložník, Miroslav; and Tůma, Miroslav: An adaptive multilevel factorized sparse approximate inverse preconditioning.Advances in Engineering Software, 2016.DOI: 10.1016/j.advengsoft.2016.10.005
  56. Kopal, Jiří; Rozložník, Miroslav; and Tůma, Miroslav: Factorized approximate inverses with adaptive dropping.SIAM Journal on Scientific Computing, 38(3):A1807–A1820, 2016.DOI: 10.1137/15M1030315
  57. Kuchta, Miroslav; Tobie, Gabriel; Miljkovic, Katarina; Běhounková, Marie; Souček, Ondřej; and Čadek, Ondřej: Despinning and shape evolution of Saturn’s moon Iapetus triggered by a giant impact.Icarus, 252:454–465, 2015.DOI: 10.1016/j.icarus.2015.02.010
  58. Lu, Yong: On uniform estimates for Laplace equation in balls with small holes.Calculus of Variations and Partial Differential Equations, 55(5):110, 2016.DOI: 10.1007/s00526-016-1055-y
  59. Lu, Yong and Zhang, Zhifei: Partially strong transparency conditions and a singular localization method in geometric optics.Archive for Rational Mechanics and Analysis, 222(1):245–283, 2016.DOI: 10.1007/s00205-016-1000-4
  60. Málek, Josef and Průša, Vít: Derivation of equations for continuum mechanics and thermodynamics of fluids.In Yoshikazu Giga and Antonín Novotný, editors, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, 2016.ISBN 978-3-319-13343-0.DOI: 10.1007/978-3-319-10151-4\_1-1
  61. Málek, Josef; Rajagopal, K. R.; and Suková, Petra: Response of a class of mechanical oscillators described by a novel system of differential-algebraic equations.Applications of Mathematics, 61(1):79–102, 2016.DOI: 10.1007/s10492-016-0123-0
  62. Málek, Josef; Rajagopal, K. R.; and Tůma, Karel: On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis.International Journal of Non-Linear Mechanics, 76:42–47, 2015.DOI: 10.1016/j.ijnonlinmec.2015.03.009
  63. Málek, Josef; Rajagopal, K. R.; and Tůma, Karel: A thermodynamically compatible model for describing the response of asphalt binders.International Journal of Pavement Engineering, 16(4):297–314, 2015.DOI: 10.1080/10298436.2014.942860
  64. Málek, Josef; Rajagopal, K. R.; and Tůma, Karel: A thermodynamically compatible model for describing asphalt binders: solutions of problems.International Journal of Pavement Engineering, 17(6):550–564, 2016.DOI: 10.1080/10298436.2015.1007575
  65. Málek, Josef; Rajagopal, K. R.; and Žabenský, Josef: On power-law fluids with the power-law index proportional to the pressure.Applied Mathematics Letters, 62:118–123, 2016.DOI: 10.1016/j.aml.2016.07.007
  66. Málek, Josef and Strakoš, Zdeněk: Preconditioning and the conjugate gradient method in the context of solving PDEs.SIAM Spotlight Series. SIAM, Philadelphia, 2015.ISBN 978-1-611973-83-9.DOI:
  67. Maltsev, Valerii and Pokojovy, Michael: On a parabolic-hyperbolic filter for multicolor image noise reduction.Evolution Equations and Control Theory (EECT), 5(2):251–272, 2016.DOI: 10.3934/eect.2016004
  68. Orava, Vít; Souček, Ondřej; and Čendula, Peter: Multi-phase modeling of non-isothermal reactive flow in fluidized bed reactors.Journal of Computational and Applied Mathematics, 289:282–295, 2015.DOI: 10.1016/
  69. Papež, Jan; Liesen, Jörg; and Strakoš, Zdeněk: Distribution of the discretization and algebraic error in numerical solution of partial differential equations.Linear Algebra and its Applications, 449:89–114, 2014.DOI: 10.1016/j.laa.2014.02.009
  70. Perlácová, Tereza and Průša, Vít: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids.Journal of non-Newtonian Fluid Mechanics, 216:13–21, 2015.DOI: 10.1016/j.jnnfm.2014.12.006
  71. Průša, Vít and Rajagopal, K. R.: On models for viscoelastic materials that are mechanically incompressible and thermally compressible or expansible and their Oberbeck–Boussinesq type approximations.Mathematical Models and Methods in Applied Sciences, 23(10):1761–1794, 2013.DOI: 10.1142/S0218202513500516
  72. Průša, Vít and Rajagopal, K. R.: On the response of physical systems governed by non-linear ordinary differential equations to step input.International Journal of Non-Linear Mechanics, 81:207–221, 2016.DOI: 10.1016/j.ijnonlinmec.2015.10.013
  73. Průša, Vít; Rajagopal, K. R.; Srinivasa, Arun; and Yuan, Zhi: Vibrations of a lumped parameter mass-spring-dashpot system wherein the spring is described by a non-invertible elongation-force constitutive function.International Journal of Non-Linear Mechanics, 76:154–163, 2015.DOI: 10.1016/j.ijnonlinmec.2015.06.009
  74. Průša, Vít; Řehoř, Martin; and Tůma, Karel: Colombeau algebra as a mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots.Zeitschrift für angewandte Mathematik und Physik, 68(24), 2017.DOI: 10.1007/s00033-017-0768-x
  75. Pultarová, Ivana: Fourier analysis of the aggregation based algebraic multigrid for stochastic matrices.SIAM Journal on Matrix Analysis and Applications, 34(4):1596–1610, 2013.DOI: 10.1137/130913821
  76. Pultarová, Ivana: Convergence theory of exact interpolation scheme for computing several eigenvectors.Numerical Linear Algebra with Applications, 23(2):373–390, 2016.DOI: 10.1002/nla.2029
  77. Pultarová, Ivana: Hierarchical preconditioning for the stochastic Galerkin method: upper bounds to the strengthened CBS constants.Computers \& Mathematics with Applications, 71(4):949–964, 2016.DOI: 10.1016/j.camwa.2016.01.006
  78. Řehoř, Martin; Blechta, Jan; and Souček, Ondřej: On some practical issues concerning the implementation of Cahn–Hilliard–Navier–Stokes type models.International Journal of Advances in Engineering Sciences and Applied Mathematics, 1–10, 2016.DOI: 10.1007/s12572-016-0171-4
  79. Řehoř, Martin and Průša, Vít: Squeeze flow of a piezoviscous fluid.Applied Mathematics and Computation, 274:414–429, 2016.DOI: 10.1016/j.amc.2015.11.008
  80. Řehoř, Martin; Průša, Vít; and Tůma, Karel: On the response of nonlinear viscoelastic materials in creep and stress relaxation experiments in the lubricated squeeze flow setting.Physics of Fluids, 28(10):103102, 2016.DOI: 10.1063/1.4964662
  81. Scott, Jennifer and Tůma, Miroslav: Preconditioning of linear least squares by robust incomplete factorization for implicitly held normal equations.SIAM Journal on Scientific Computing, 38(6):C603–C623, 2016.DOI: 10.1137/16M105890X
  82. Souček, Ondřej; Bourgeois, Olivier; Pochat, Stephane; and Guidat, Thomas: A 3 Ga old polythermal ice sheet in Isidis Planitia, Mars: dynamics and thermal regime inferred from numerical modeling.Earth and Planetary Science Letters, 426:176–190, 2015.DOI: 10.1016/j.epsl.2015.06.038
  83. Souček, Ondřej; Hron, Jaroslav; Běhounková, Marie; and Čadek, Ondřej: Effect of the tiger stripes on the deformation of Saturn’s moon Enceladus.Geophysical Research Letters, 43(14):7417–7423, 2016.DOI: 10.1002/2016gl069415
  84. Souček, Ondřej; Kalousová, Klára; and Čadek, Ondřej: Water transport in planetary ice layers – a parametric study.Geophysical \& Astrophysical Fluid Dynamics, 108(6):639–666, 2014.DOI: 10.1080/03091929.2014.969251
  85. Souček, Ondřej; Průša, Vít; Málek, Josef; and Rajagopal, K. R.: On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures.Acta Mechanica, 225(11):3157–3186, 2014.DOI: 10.1007/s00707-013-1038-4
  86. Stein, Judith and Průša, Vít: Viscoelastic rate type fluids with temperature dependent material parameters — stability of the rest state.AIP Conference Proceedings, 1843:020004, 2017.DOI: 10.1063/1.4982979
  87. Tierra Chica, Giordano and Guillén-González, Francisco: Numerical methods for solving the Cahn–Hilliard equation and its applicability to related energy-based models.Archives of Computational Methods in Engineering, 22(2):269–289, 2015.DOI: 10.1007/s11831-014-9112-1
  88. Tierra Chica, Giordano; Pavissich, Juan P.; Nerenberg, Robert; Xu, Zhiliang; and Alber, Mark S.: Multicomponent model of deformation and detachment of a biofilm under fluid flow.Journal of the Royal Society Interface, 12:20150045, 2015.DOI: 10.1098/rsif.2015.0045